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NATIONAL ADVZSCIRYcOMMITmm FOR AERONAUTICS

TECHNICAL NOTE!1X1

KEPROKIMATE RELATIONS AND CHARTS FOR W-SPEED

STUXGITY DERIVATIVES OF SWEPT WINGS

By Thomas A. Toll and M. J. Quei~o

suM-mRY

A simplified theory has been used to derive a~proximate relations for
the low-speed stability~derivatives of sweyt w@gs. The analysis is made
only for wings without d31edral, but the effects of sweep angle, asyect
ratio, center-of-gravity location, end, in most hstances, taper ratio
are considered. Several of the rektions consist of a correction factor
(to account for the effects of 8weep) and the derivative for an unswept
wing having the ssme aspect ratio smd taper ratio as the swept wing.
Methods of extend@j or of extrapolating lamwn derivatives for unswept
wings to low aspect ratios are given in an appendix. M some =tances,
as in the case of derivatives that exist only for swept wings, the simpli-
fied theory is used to detemine the absolute magnitudes of the derivatives.

The approximate relations have been wed to construct charts for the
stabili~ derivatives of wings having a taper ratio of 1.0.

Calculated values for the derivatives are compared with eqerimental
values. The comparison Wcates that the calculated values sre fairly
reliable over a range of lift coefficient (startingfrom zero) that
decreases as the sweep angle increases. Large discre~ancies between
calculated and experimental values are found for highly swept wings at
the high lift coefficients for which the flow is believed to be partially
separated from the wing surfaces. Even a more rigorous method, if based
on potential-flow concepts, probably would not provide much improvement
in the range of lift coefficient for which partial sep=ation exists.

33VTRODUCTION

Rigorous solutions for the low-speed characteristicsof swept wings
are, at present, so cumbersome that a number of the stability derivatives
have not yet been investigated. EstWates of some of the derivatives
frequently have been made, however, by mesm.sof an approximate theory
such as that proposed by Betz (reference1). Although results obtained
by such methods are rough approximations, the use of more precise
methods frequently is not justified because of the amount of work involved
and because of certain basic limitations of even the most rigorous methods.

—. ——.— _______ _ ..—. .—.—.. .—
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The application of a shrple theory is extremely convenient since
equations cm be derived to indicate the effects of Hvidual geometric
parameters, such as swee~ or aspsct ratio. For the more rigorous methods 3

known, the effects of a single geometric parameter canbe detemined only
bymakhg separate solutions for different plan forms in order to cover
sn adequate range of velues of the parameter being investigated.

Some confusion has resulted.in the past ~ecause Wferent interpreta-
tions have been given to the simple theory, and consequently,varytig
results have been obtained. In the present paper, equations for the
stability derivatives of swept wings are derived from a psrticullarappli-
cation of simyle sweep theory~ The method.used accounts approximately
for the effects of the induced angle of attack, which generaUy has been
neglected h yrevious applications of simple sweep theory, but neglects
any effects of sweep on the load distii’bution.

Sm3&s

The symbols used in the analysis and iu the presentation of the
results are defined herein. AU spans and chords are measured perpendicu-
lar and parallel, respectively, to the phne of symetry. Angles of
attack are measured in the plane of”symmetry, unless specified differently. P.

P)w sU@ar velocities about
(see fig. 1)

C2
section lAft coefficient

%
TJ

t
13.ft coefficient —

&$

cl) drag coefficient ~

()
&Pv%

CY lateral-force coefficient

K-, Y-, and Z-exes, respectively
,..

(
Airfoil section lift

$V2c
)

(
L9teral forci-

@S )

cm pitching-moment coefficient

(-

(Pitt

)

moment

4T2s~’”
2

Cz rolling-moment coefficient

( .-

Roll

)

“moment

$@Sb

Cn ~wing-moment coefficient ya

(- )

moment

“ ~V%b

-— —.
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c1

‘1

C2

F2

c1

f~

C2

fz

P

s

v

v=

v~

v’

Vn ‘

b

c

E

x

x’

F1

()

primary force coefficient —

$%’

component of resultant semispan load directed normel to pkne
formed by velocity vectors T and Vn (see fig. 2)

F2
primeq force coefficient

()
~
P

component of resultant semispan load directed parallel to
veloci~ vector Vn (see fig. 2)

section primary force

()

‘1coefficient _

$V-2c

component of resultant section load tirected.normal to @.ane
formed by veloci@ vectors V’ and V-n’

()‘2section primary force coefficient —

$*C

comyonent of resultemt section load directed parallel to
veloci~ vector Vn’

mass density, slugs per cubic foot

wing area

flight velocity

ccmponent of flight veloci@ normal to wing quarter-chord line

component of fld@t veloci~ peraUel to wing quarter-chord 13ne

local resultsmt velocity at any spanwise station

component of local resultant velocity normal to ting qw3rter-
chord line at any spanwise station

wing s-pen

wing chord

wing mean chord (l/A)

longitudinal distance rearward from coor~te origin (a&plane
center of gravi~) to wing quarter-chord line at w spamdse
station

longitudinal distance resrward from wing aerodynamic center to
wing quarter-chord line at any spanwise station

——. ———
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.

longitudinal distance rearward from coordinate origin (airplane
center of gravi~) to wing aero@mmic center

absolute value of spanwise distance from plane of symmetry to
any station on wing quarter-chord ltne

effective lateral center-of-pressurelocation of resultsat
load causbg rolling moment due to sidesliy

effective lateral center-of-pressurelocation of resultant
load causing rolllng moment due to zwlling

effective lateral center-of-pressurelocation of resultant
load caus3ng yawing moment due to rolling

effective lateral center-of-pressurelocation of resultaat
load causing rolling moment due to yawing

effective lateral center-of-pressurelocation of resultant
load causing yawing mment due to yawing

angle of sideslAp, radians unless specified ddfferentl.y

local angle of sideslip; angle between plane of symmetq and
local air-stieam direction at quarter-chord line of any
section, radians

angle of attack, radians unless qecified differently

angle of attack, measured between ylme of wing and component
of veloci~ normal to wing quarter-chord line

incremental change in angle of attack, caused by rolling, at
my spanwise station

ugle between Z-=is cuuivector representing prhary force
coefficient Cl (or cl)

sngle of sweep or skew of

()32aspect ratio ~

( ‘ ch-tqer ratio ‘i
)Root chord

dihedral angle, radiens

wing quarter-chord line, degrees

effective edge-velocity correction factor for 13ft

effective edge-velocity correction factor for rolling moment

,,
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qc

2T

a.

wing-tip helix angle

lateral flight-path curvature

longitudinal f13ght-p&th curvature

section lift-curve slope for section normal to qum%er-chord
line when placed in direction of free stream

acv
%P= ‘m2T

acn
Cn =

?9p a2j

acz “%r= ~
T)57

. acn
cIlr orb

E

%
cLq = a=)

—— ———. .— —..
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r,

L

R

i

A =0°

$=0°

o

1,2,3

left wing panel

ri@t wing panel

Induced

restricted to zero sweep

restricted to zero sideslip

yrofile

.

first, second, and third increments, respectively

ANALYSIS

Scope

Relations for the stabili@ derivatives of swept wings
from an approximate theory. The derivations are considered

are derived
applicable to

... .

a system of stabili~ exes (see fig. 1), although certain approximations
have been made in representing the axis system. ‘Theequations obtained
are summarized in table I. Several of the relations are in terms of the
derivatives for unswept wings with the same aspect ratio and taper ratio
as the swept wings. It is assumed that the derivatives for unswept wings
can be obtained by more exact theories or from experimental data. Since
much of the available theoretical information on the derivatives of
unswept wings is limited to aspect ratios greater than 6, methoti of
extending or of extrapolating these derivatives to lower aspect ratios
are developed in an appendix. In some instances, rigorous methods are
developed for extending the derivatives to zero aspact ratio. In most
cases, however, techniques based on extrapolationsare used, and in these
cases values for the derivatives me given to an aspect ratio of 1.0.
The extrapolated values become less reliable, of course, as the aspect
ratio decreaaes.

The analysis applies only to wings without dihedral, but it includes
the effects of sweep, aspect ratio, center-of-~avity location, and, in .,

most instances, taper ratio. The method, however, is believed to become
less reliable as the taper ratio departs from unity. Charts, based on the
equationa and values of the derivatives given in the appendix for unswept +

wings, are presented in figures 3 to 15 for swept wings havinga taper
ratio of 1.0. Some comparisons are made with experimental data.
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Basic Concepts

The method consists of an application of strip theory with approxi-
mate consideration given to the effects of aero-c induction.
Expressions are derived for themgnitudes of the components of the
resultant force acting at a section of a wing under conditions of
straight flight, sideslippingflight, rolling flight, yawing flight, and
pitching flight. Approzhnate equations for the stability derivatives of
constant-chord swept wings are derived from the orientation and magnitWW
of the force components for a @ven flight condition. In the case of
derivatives which exist for both swept and unswept wings, the appr-te
equations are used only for the determination of correction factors for
the effects of sweep; these correction factors may be applied to experi-
mental or rigorous theoretical values of the derivatives for unswept wings
and exe considered to be reasonably reliable for wings having taper ratios
as low as 0.5. The approxhmte theory indicates that certain derivative
exist only for wings with sweep. Such derivatives
directly by the approximate theory.

In order to account for induction effects, it
familiar expression (from liftim.g-linetheory) for
attack of unswept elliptic figs

~=g

must be evaluated

is assumed that the
the induced .mgle of

(1)

is also applicable to swept wings and that the same expressionmay be
used to dete?mine the local induced angle at my section provided the
local section lift coefficient, rather than the wing lift coefficient,
is substituted in eqmtion (l). This procedure amounts to a reduction
in the two-dimensionallift load by a factor that remahs constant along
a semispan of the wing. Although the assumption regarding the local
induced an~e of attack is lmown to be inaccurate, the consistent appli-
cation of this assmption to loth swept ma unswept wings is expected to
yield reasonably reliable correction factors for the effects of sweep.
The effects of sweep on the distribution of loading are, of course,
neglected in the strip-theory treatment. The present method, therefore,
can be expected to account only for the geometric effects of sweep.

Certain lWtations of the present simplified treatment have been
olserved experimentally. For example, when the sweep angle is referred
to the wing quarter-chord line, the wing lift-curve slope is found to
decrease somewhat more rapidly with sweepforward than with sweepback,
particularly for highly tapered wings. fithough such _&ends cannot le
predicted by the present method, they probably could be accounted for to
some extent if the sweep angle were referred to some wtig reference line
other than the qusrter-chord line. In the absence of sufficient experi-
mental data to permit the choice of a more suitable reference line,
however, the use of the quarter-chord line is retained for the present
analysis.

—-. —.———. ———.—. —. —.
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Straight Flight

- The application of the method of analysis to
condition can be illustrated by comparing the two
to skewed wings with tips cut prallel to the air

the straight-flight
pmels of a sweyt wing
stream (fig. 2).

According to &ip theo~ the ioad distribution in stiaight flight is
uniform across the span of a constant-chordwing and, therefore, the
total load.on a panel can be considered to act at a single point (the
center of pressure of the panel).

The lift coefficient for an inf~te wing skewed at an angle A is
gl.venby

Cl = %aoCOS2A

where ~ is the s@Le of attack measured between the veloci~ component
normsl to the wing quarter-chord line and the wing surface, and a. is
the section lift-curve sloye of the wing when placed normal to the air
stream. From the assumptions of lifting-line theory, the lift coefficient
of a finite skewed wing is appro-tely

CL=( a—.
cos A

where the angles aemd~ere

%L
Cos d~COS2A

measured in a

‘(2)

verticsl plane that
includes the vector representing the relative wind (the wing quarter-
chord line is assumed ‘b lie in a horizontal plane with the wing at zero
angle of attack). The induced angle of attack ~ for a skewed wing is
@ven approximately by equation (1) provided A is the aspect ratio
based on the wing span perpendicular to the relative wind. Substitution
of equation (1) in equation (2) gives

%(TCJC~=a -—aocos A

which reduces to

a.cos A

or, by substituttig 2fi for ~ in the denominator,

CL =
&cos A a

A+2COSA

— .- —. ——
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A panel of a swept wing at an angle of attack can be represented by
one-half of a skewed wing, provided the skewed wing is rotated through
m angle f3 (which depends on the angle of attick of the swept wing)
about an axis alined with the relative wind. (See fig. 2.) The lift
force, therefore, must also be rotated through-the s~e a&le,
given by

.
19=u tan A

A coefficient representing the rotated lif%-force vector for a
panel of a swept wtig will be desi~ted as the prq force
coefficient Cl, which has the mgnitude

c1 .1 AaocOS A
2A+2COSAa

and which is directed perpendicular to the pleae formed by the
vectors V snd v= (fig. 2).

which iS

single

(3)

veloci~

For a skewed wing, the induced angle of attack measured in a vertical
plane that includes tie vector represe&kLng
equation (l). The induced angle in a plane
line, therefore, is

% = ticcos A

T,

For a swept-wing ~el, therefore, a second.
has the following magnitude:

c2=&
2JCACOS.A

the relative wind is givin~
normal to the quarter-chord

W- force coefficient C2

(k)

The force represented by this coefficient has the same direction as the
component of the flow velocity normal to the quarter-chord line of the
wing.

Lift-curve slope.- For small angles of attack in straight flight,
the effect on the lift coefficient of the tilt of the vectors represent-
ing the pr3mary force coefficient Cl

total lift coefficient of a swept wing

can be neglected; therefore, the

is s@ly

(5)

By substituting equation (3) in equation (9), the lift-curve slope
obtained from an adaptation of lifting-line theory is found to be given
by

A~cos A

c&=A+2cos A
(6)

——.---.—— --——.—.—. ..— —— .— -— —— .—. . .
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Equation (6) is stiject to tie l-imitationsof lifting-line tieory
which become important at low ~pect ratios. A more reliable value
of

%
for swept wings w be obtained if the simple

derive a correction factor (to account for the effects
may be applied to values of c~ of umswept wings, as

more precise methods. For unswept wings, equatioq (6)

(%)
.*

&O” A+2
.

theory is used to

of sweep) which
derived from

reduces to

which may be used in conjunction with equation 6) to give

I

()
(A + 2)cos ‘Cb

C~=A+2coSA ~o (7)

where
(%)

is-the Et-curve slope of an unswept wing with the
& O
?

(4
same aspect ra io and taper ratio as the swept wing. Values of C

A~O

can be obtained from experiments or from an accurate theo~ such as that
of reference 2.

A+2
If the factor

A+2COSA
is mitted from equation (7), the

/-
following simple equation is obtained: /-/ -

c%=(%)A*O CosA‘- ‘ -
(8)

This equation, which applies strictly only at‘infiniteaspect ratio, has
been used to some extent in the past for finite aspect-ratio wings and
results from a particular interpretationof the simple theory for the
condition in which the effect of the induced angle is neglected.

Equation (7) can be derived to give the effects of sweeping fixed
~ Wels, in which case A‘ is the aspect ratio‘bf the unswept wing
snd, at least for untapered wings, is equal to A/cos2A. The elternate
equation is

%.=(A’ + 2)COS A

A’+~ (%) A ‘fl=oo
cos A

where
()
c& is the lift-curve sl~e of the unswept wing from

A ‘#=O”
which the swept & was derived and A‘ is the aspect ratio of the
unswept wing.

——..
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If the factor
A’+2

2 is neglected from the equation just..

I-1

given, another
Mterpretition
of the induced

A1+—
COB A

simple equation is oltained, which arises from a second
of the simple theory for the condition in which the effect
angle is neglected:

~ = @’)A,fi40co”A
(9)

A cowison of the results calctitea from equations (7), (8),
and (9) tith the more precise theory developed by Mutteqerl (reference 3)
is given in figure 3. Results obtained from equation (7) are in good
agreement with Mutterperl’s results; whereas, equation (8) overestimates
the effects of sweep emd equation (9) Underestimates the effects of sweey.
At aspect ratios approaching zero, results obtained either by Mutterperl’s
method or by equation (7) are in agreement with Jones’ theory (reference 4).

Induced.ara~.- The induced bag of a swept wing is, to the first
order,

Substituting the expression for
gives,as a direct consequence of

2C2COS A (lo)

C2 (equation (4)) in equation (10)
the basic assmption that the induced

angle-of attack is give= by equation (1), the fo-Uowing equation:

CL2

CDi – ~A
.— (n)

Equation (U.) indicates that, to a first approximation, the induced drag
is independent of sweep. Some effects of sweep on the induced drag
would, of course, be e~ected because of changes in the load distribution
which are not considered in the present.method. Theoretical results
presented in reference 3 for the induced drag of swept wings are in fair
agreement with equation (n), and,therefore, some support is given to the
present assumption regarding the induced angle of attack.

Sideslipping Flight

For a constant-chord swept wing in sideslip, according to strip
theo~ the distribution of load is uniform over”each panel, although the
ma~itude of the load on the left panel is different from that on the
right panel. As in the case of straight flight, therefore, the components
of the total load on each panel may be represented for convenience by
vectors located at the centers of pressure of the panels.

1
— .—. ..—. ._ . . . . . __ __

\.-
—.—. .——. —.

. .
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.
The pmel loads are altered by sidesli~ %ecause of the effect of

sideslip on the veloci~ components ncrmal to the quarter-chord lines of
the panels and on the angles of attack with respect to the no-l-velocity .

components. The component of veloci~ normal to the quarter-chord line
of the left wing psmel of a swept wing is altered due to sideslip by the

factor COS(A + P) , snd the angle of attack tiUthrespect to the normsl
cos A

veloci~ component is altered by the reciprocal of the sam<factor. The
lift onapanel of sm”infinite-span swept wing
square of the normal component of veloci~ ad
angle of attack. The increment of lift due to
panel of an infinite-spanwing, therefore, csm

is proyortiom.130 the
to the first power of the
sidesli-pfor the left
be written as

1

Inasmuch as

()Cz p=o”= ‘cog A
and for smaU angles of sideslip sin B2 f3 and cos BZ 1, the following
eqmtion is obtained: ,,

The yrimry-force-coefficient increment, resulting from sideslip,
for a finite-span ting can be written as

NIL =&lczL - Induced lift coefficient
)

The lift distribution resulting from sideslip is antisyme-tiical
with respect to the plane of symmetry and, therefore, the aspect ratio
that detmmines the magnitude of the induced angle of attack is one-half
of the wing geometric aspect ratio. The inauced angle for the left wing
panel in planes p.mmll.elto the ylane of symmetmy can be shown to be
givenby the expression “

Therefcre

[

4 AC1LCOS3A
ACk=$ -fiaa#n A- aocos A

A COS3(A+ f3) 1
J .

— .- .——_
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With the ald of the relation between cc and CL given by equation (6),

CL A+2COSA ~wA
~IL=-~A+4COSA

we total value of the ~rtmary force coefficient for the left wing
penel for comltiet symmetrical and antisymmetricalloads is

CL (clL=zl- A+2COSA
A+4COSA

and.similarly for the right wing panel

(13)

For the purpose of obtddng expressions for derivatives with respect
to sideslip, in which case the antisymmetrical load is small relative to
the symmetrical load, the combined load, in the determination of the induced
sngle of attack, may be assumed to le symmetricalwith respect to the
plane of symmetry. The induced angle of attack in a plane perpendicular
to the quarter-chord l.he of the left wing panel is

2C1LCOS%

%iL =
ITACOS3(A + B)

The coefficient of the force directed parallel
of velocity on the left wing panel, therefore,

c% =

and, on the ri@t wimg panel,

c% =

2ClL2cos2A

ITACOS3(A + ~)

WR2c0’2A

Y(ACOS3(A- p)

Rolling moment.- An increment of rollbg
resulting from sweep, can be erpressed as

to the normal component
is

(14)

(15)

moment due to sideslip,

(16)

/
.— —-.——— --
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EY combining equations (E) and (13) with equation (16), the
derivative is as follows:

“ jrL,

Appr~te values of the center of pressure
b/2

we given in the

appendix.

An additional increment of rolling moment due to sidesliy, which is
eJso proportional to the lift coefficient, is found to exist for unswept
wings. (See appendix.) The total value of the derivative therefore can
be expressed as .

1’()-?L,%P
?

A+2cosA tan A
c~ = (JL
P % A__o-~2 A+4COSA 2

1

(17)

Lateral force.- The approximate theory indicates a lateral.force due
to sideslip given by the relation

Cy = (c%-C%)sfiA- @eL- clR%)cOs$ (1.8)

where eL and ~ are the angles about an axis dined with the relative
wind through which the ‘vectors clL and c1

k

are rotated because of the

sngle of attack smd the angle of sidesliy. e ~@e8 6L and eR are

6L=a
sin A

COS(A+ ~)

en=a sin A
J..

C%-c%=

-(A - P)

~, equations (12) to (15), and the
as given by equation (6) with a. equel

CL2-AA+8COSA

dcos AA+4cos A
P

CL2tan2A A + z Cos A

clLeL - C~ReR = fl A+4COSA$



15

Substitution of these rebtions in equation (18) leads to

Yawing moment.- An increment of yawing moment due to sidesli~,
resulting from sweep, can be e~ressed as

(
cos A

LCn=-c -c —2-L %)( 4

(
+ C~LeL

)

5
- clReR ~

By means of equations (12) and (13) ad. the expressions
SIld eR, it can be shown that

CL2t~ A

clLoL + clReR =
2YCAcos A

(A + 2 COS A)

(19)

(20)

.

given for L9L

The incremental derivative, rasulting from sweep, for the p- moment
due to sideslip, therefore, is found from equation (20) to be

-A

(

A- A2

% = *L2 A(A + 4 Cos A) Cos A - ~ )

zsin A

8 COS A
+~~

An additional increment of yawing moment due to sidesli~, which ig
alSO prOpOfiiO~l ~ CL2, exists for unswept wings. (See appendix.)

The total value of the derivative, therefore, can be expressed as

= CL2[()‘5E tan A

(

A ~2

~
+&sinA

c% %2 A@o -
COSA-F-

nA(A +4 COSA)
— (21

8COSA ~ A

Rolling Flight

The total load on a rolling wing is made up of a symmetrical load
resulting from angle of attack and an antisymmetricalload resulting from
rolling veloci~. As in the case of sideslippimgflight, the tiuced
angle of attack associated with the amtlsymetrical load is assumed to be
determined by the aspect ratio of a single wing panel; therefore, at any
spanwlse section on the left wing panel the section primary force
coefficient is ae follows:

(

IMl

J

2 ACIL
—- ~cos%‘lL = GOSA d COs

. .—— ._.—. - ..——-—— -————— —— .— —.
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where Ihl is the absolute value of the change in -e of attack,
caused by rolling, at any section. lCromthis definition,

and, therefore,

&cos A
Y Pb

‘IL = ~ + 2WCOS A b= Z
Y(

or, by substituting 2fi for ~ in the den~tor,

AaficosA ~ pb
Ac~L =

~+4cosA *—

‘I’hatotal value of the section prhkary
symmetrical and antisy.umetiicalloads
panel is

b/2 2V

force coefficient for combined
at any section on the left wing

&cos A

L=~”-A+4coe A
c1

and, Btiilarly, for the right wing pmel

&cos A
clR=~+

. A+4COSA

For tie purpose of calculating values of the derivativeswith respect
to roll, in which case the antisyrmetrical load is small compared with
the symmetrical load, the induced angle of attack resulting from combined
symmetrical and antisymnetricalloads can be assumed to be given by the
relation used to csllculatethe induced sngle resulting from a symmetrical
load. The magnitude of the induced angle, however, is determined by the
actual load on the panel. Therefore,

c1 2
LC2 =

L A cos A

2
CIR

C2 =
R & cos A

(24)

(25)

.

—..— -—— _ .-—. —_. . . .
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RollinR moment.- At low angles of attack the coefficient or rolling.
nmment due to rolling can be expressed as

c, .>’’’(C,L-C,Ry@ (26)

After substitution in equation (26) of the values of c1 and c~R

given by equatiom (22) and (23), the strip-theory valu~ of the derivative
of rolling moment due to rolling is found to be

1AC08A
c1 =-gAy4co~A
P

which can be rewritten in a form similar to that of equation (7); that
is,

Czp = (A + 4)COS A

()A+4coa Acz HO (’7)

The equation for Cl actually should contain additional terms dependent
D

on the angle of atta~k and the center-of-gravi~ location. Such terms
generally are small, however, and are therefore neglected in the present
approximate tieatient.

Lateral force.-
@ven by

Cy.$ 12
ro

where

The coefficient of lateral force due to rolling is

From equatiou (22) to (25) and from the approximate relation between a
and. CL as given by equation (6) for a. equal to 2ti, it can be shown
that

&L
“L

Y ~b
A b/2 ‘V

‘C~=-A+4C0s

C1L6L - C1-#R = ‘4cLtm A 7
pbA+3cos A

b’~A+4cos A

.—---- .—..—..________ ——— -————. .— —–—-— ——-. ._ ._ _
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After substituting these relations in equation (28)
intefyation, the derivative of lateral force due to

NACA ~ NO. 15~

Yawing moment.- The coefficient of yawing moment

and perfoming
rolling is

the

(29)

( 3]- CILe. - c@ x @

due to rolllng is

)cosA+xsinA

(30)

where

x= ()=+Y-i *A

snd, from equations (22) a (23),
.

After substitut~ the

C2L - C2R) clLeL - &RY

c1
L

+ CIR =2CL

appropriate expressions for CIL - CIR,

and x h equation (30), the derivative of

ya~mmnent due to rolll.ngis found to be

txmfi
~LA + 6(A + COSA)

‘%.P= -~ A+4 cos A

The approximate theory is then used to obtain a correction factor for
the effects of sweey to be applied to the derivative for the unswept wing,
thus,

‘+4 [-+@=+@p+*]~F)Aoo(31)C~=c.A+4cos A
=

‘The value of Cnp depends upon the center-of-gravi~ location
because of the existence of a lateral force due to rolling. When ~ is
zero, equation (31) becomes

.

— .— ——
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C= = CL
P

A+4 [.+,( +~)%]@..o
A + 4 COSA

Yawing Flight

spanwise distribution of load exists on a SweTt
because of the velocity gradient along the span

An uasymnetrical
wing in yawing flight
and becawe of the variation in direction of the air stream along the
span. The prhary force coefficients obtatied for the condition of
sideslipping flight can be modified for application to the case of yatig
flight by letting P’ be the amgle between the ylsme of symme~ and
the local air-stream direction at the quarter chord of any section and
by accounting for the effect of the local veloci~ V’ on the section
coefficients. The section prhary force coefficients, therefore, become

( A+2COSA
clL=CLl-

)()A+4cosf’*A ‘2

(~=~1+ x)v> 2
c1 ‘+2cos Ap’ tan ~

A+4COSA

(32)

(33)

where p‘ and the velocity ratios are related to the yawing parameter ~~
by the equations

V’L .l+yrb——
T b/2 2V

v ‘R
—=l -

Y r~
v b~ 2V

_— ____ ———— . ..—z
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RollinR moment.- The coefficient of the rolling moment due to yawing
is given by

By means of equations (32) W (33} it c-anbe shown that

tan A

and by mibstitnting this value of CIL - CIR in equation (36), the

derivative of rolling moment due to yawing obtained is

Clr =

[

+2COSA

(

*2A

)]

+ZtiA.—
~$+; +4cos A .24 C2A

or

(36)

(37)

Lateral force.-
@ven by

The coefficient of lateral.force due to yawing is

(38)

where

sin A
8L .a

COS(A + PI)

and

lWom equations (34) ~ (35)J

2cf

c%
{-
+-

A+,cosA~+(&-~-j)

“2R=~co aA% b2-@AA+4cos Ab/2

,-

. . ..—



- from equations (32) and (33) and by use of the relation between ~ and a as given by

equation (6) with a. equal to ~,

L J
After subatltuthg these relations in equation (s8) and lntegrat~, the derivative or
lateral force due to yawing for wings hating taper ratios near 1.0 Is found to be

(39)

Yawlw moment .- Yawing mment due to yawing results from the lift and induced
forces and from em unsymmetrical s~wise distribution of profile drag. The Increment

of yawing moment due to yawing resulting from the lift and induoed foraea is given by the

following equation:

Mm equationa (32) and (33) W tie rel.atlon
with ~ aqual to 2fi, it cm be shown tit,

between CL ad m aE glvm by equation (6)
tc a firgt approximation,

? Cos AtanA1 CL2 &clL@L + clR@R = ~
d ooe A

The strip-theory value of the derivative is found, after appropriate 9ui3etltution0 for the
q~tities a2 - o%, alLeL - c~R~> @

L
alL9L + CIR~ in equation (40), tc be
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/

6 COB A

[0

22 t&A
1

ti%l——
‘A+4cos A ~ ~2 +

which can be written as

f

()Ac 1(4 4 cos A.~2 l-~A+
+1 cos A

J

The wing profile drag, which ma been neglected in the previous
derivations given herein, may contribute an appreciable increment of
yawing moment due to yatig. An accurate indication of the effects of
profile drag on Cnw c= be obtained only when the spanwise distribution

of profile drag is kwn. AS an app.o-tion, howeve.~ the profile
drag may be assumed constant over the wing surface.,in which case the

quanti@ (“=)2

%0
is a function only of the wing geomatry. Such an

assmnption was made in reference ~. Calculations based on the methods
given in reference ~ have been made for wings of the type considered in
the present emalysis. The results are given in figme 14.

The total value of the yawing moment due to yawing is the sum of the
two Increments that have teen discussed. The complete equation for the
derivativ~ therefore is

{%44 cos A
c ‘CL 1-2 + A

X )
Rti A+tm2A

nr cos A ‘2COS ‘—c A 12

[

9 cos A
‘A+4COSA

[I~Yw+*}[9]L.o+ cDop:’j, (4,)

Asan
given

approximation, the profile-drag coefficient may be assumed to be

w
CT2

C“O= C”-*

—- .— .—. —— —— —— -—. .
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Pitching Fli@t

L~t .- If the center of gravi@ of an airplane does not coincide
with the aerodpmic center, an incremsnt of lift due to pitching srises
from the change in the angle of attack at the aerodynamic center. The
change h angle of attack is

and the increment of lift is

or

(42)

.

A second increment of lift due to pitchtng results from the
curvature of the streamlines along the wing chord. The effect of
streamline curvature on the lift of a wing is very similar to the effects
of cemler of a wing in strai@t flight. For an airfoil with circular
camber, zero lfit is obtained when the relative wind is approximately
parallel to the tangent of the mean camber line at tie three-quarter-
chord station. The effective change in angle of attack, therefore, is
the change in Urection of flow between the one-half-chord station and
the three-qusrter-chordstation. The change in angle of attack is

For an infinite wing, the lift increment caused by curvature is simply

(~L)2 ‘~-aocos A (43)

and acts at the midchord s~tion. For a finite wing, however, the
ficrement Of l~t (&T,)fi caused by curvature induces a lift force—.
which acts at
from (~)2.

is given by

the quarte~-chord
The magnitude of

station and is opposite in direction
the third lift increment due to pitching

The resultant lift-force increment due to pitching is found by
adding equations (42), (43), emil(W). The resulting equation is

(44)

(45)

— — .— ——. —
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~itchin~ moment.- An increment of pitching
results from the lfft due to pitchtig which was

moment due to
considered in

(44), becomes

or

(%, =‘c+@+~~]-&os A

A second ticrement of pitchi@ moment due to pitching is

yitching
the

(46)

a moment
about the aerodynamic center caused by a veriation in angle of attack
along the lifting line of the wing. This increment is not associated
with a change in lift. For untapered wings tie local difference between
the angle of attack at any spanwise station on the lifting line and the
angle of attackat the aerodynamic center is

(47)

The incremental wing pitching moment can be found by an integration of
the section pitching moments (about the wing aerodynamic center) along
the wing span. For un~pered wings .

(48)

where K is a correction factor for the effects of finite aspect ratio
on the local section lift coefficients. The expression for K csmnot
be detemined exactly. A comparison of the angle-of-attack distribution
for wings in pitching flight with the angle-of-attack distributions for
wings in straight and rolling flight, however, indicates that the induced
angle resulting frcm the pitching load should be approxhnatel.ythree
times as large as the ~ucsd angle for a wing in straight flight. Thus,

A COS A
K$s

A+6COSA

c,

.

—
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Substitution of this
gives

approximation

25

and of equation (47) in equation (48)

$which, on performing the integration and so ing for the derivative of “
pitching moment dud to pitching, becomes

(! =-1 A3aocoSA ~2A

2 2XA+6cosA
(49)

The total value of the derivative of pitching moment due to pitching is
obtained by adding equation (46) and equation (,49). ‘lhusj

Substitution
rearranging,

of the expression for ~ given by equation (6), and
leads to ~

%

{

‘m ‘$a=-aocosA
A+2COBA

Values of C% have leen derived

1 A3W2A

‘2~A+

61

+1
COS A 8 (50)

by Glauert (reference 6) for

rectangular unswept wings, and these values might be used as a basis for
a general equation that includes the derivative for the unswept wing as
has been done in several of the previous derivations. It is found,
however, u~on setting a. equal to 2YC, that equation (50) gives
values for

c%
for unswept wings that are very ne~lly the same as

those given by the more exact mdhod of reference 6. There seems to be
no advan%ge, therefore, in altering the form of equation (50).

DISCUSSION

The derived expressions for the stability derivatives of swept wln~
are sumarized in tabls I.

(
All those expressions equations for c~) %pJ

)Czpj cnp~ CZr> W Cnr that”have been related to the derivatives for

am unswept wing of the same aspect ratio ad taper ratio as the swept
wing are considered to be applicable to wings having taper ratios ranging

—— - .——— —. . —.— —.— ——-—
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.’

at least from 1.0 to 0.5. For those expressions in which the simple
theory has been used to detemine the absolute magnitudes of the

(
derivatives equations for C~, CYp, CYP) Wrj CIqj and ~), the deriva-

tions have been made specifically for a tayer ratio of 1.0. Inmost
instances, however, moderate deviations from a ta~er ratio of 1.0 are
not likely to have my lsrge effect on the values of the derivatives,
at least for low lift coefficients.

The expressions included in table I have been used to derive charts
(figs. 4 to 17) that give values of the derivatives as functions of
sweep angle, aspect ratio, and center-of-gravi~ location for wings with
taper ratio of 1.0. Whenever a choice of the section lift-curve slope
cotid be made, a v~ue of 5.67 (per radian) was assumed as in reference 7.
The charts me presented primarily for illustrating the effects of the
most important v=iables. The equations normld.y should be used when
making estimates for a specific wing, since, at least for the more
important derivatives, the taper ratio end section lift-curve slope may
then be considered in evaluating the derivatives.

The wing contribution to the derivatives cYpY c~~ * :s~eyr’
which generally is neglected in the case of unswept wings, ~
considered in the present smalysis in order to indicate at least the order
of magnitude of the effects of sweep. The smal.ysisindicates that these *
derivatives ere sffected by sweep, but the effect probably is not
particularly important unless very large sweep angles are used.

.

Expertiental data for the derivatives have been obtained for the
series of untapered swept wings shown in figure 16. The tests were made
in the Langley stability tunnel by a procedure in which the air stream is
made to roll or curve about a stationary model. Comparison of experi-
mental results and results calculated by the methods developed herein
sre shown in figures 17 ta 21.

The characteristicsof the unswept wlug were generally predicted
qtite accurately at all lift coefficients below the stall - probably
because no ~ortant deviations from potential-flow characteristicsare
likely to occur with unswept wings of moderate smd high aspect ratio
until maxtim lift is approached.

The approximate theory generally indicates accurately the trends
resulting from the effects of sweep, at least over a range of lift
coefficient (starttigfrom zero) that decreases as the sweep angle
increases. in some hstances, however
tives

%
- %r)

, particularly for the deriva-
the theory apyeers to underestimate the magnit-

udes of e effects of sweep. This underestimationprobably results
largely from the fact that chsnges in the span-load distributions are
not accounted for in the present analytical.method.

At high lift coefficients,poor agreement between experimental and
calculated derivatives frequently was obtatied for the swept wings. The
damping in roll, for example, increased considerablywith lift coefficient

o

.
.. ..
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for all the swept wings tested. ‘I’histicrease cannot be considered to
le a characteristic trend for swept wings, however, since tests of highly
tapered swept wings have indicated.marked reductions in the damping h
roll as the lift coefficient increased. It shauld be noted that the
sifps of the rather important derivatives CnP and Czr were reversed

in the high lift-coefficientrange.

The large discrepancies between calculated. end experimental results

for highly swept wings at moderate .andhi@ lift coefficients undoubtedly
are caused by partial separation of flow which results in changes in the
distributions of lift end drag along the wing span. Increases in
Reynolds number (tests were made at Reynolds numbers ranghg from 1,000,000
to 2,000,000) probably would delay the alterations in the flow conditions.
Even at hi@ Reynolds numbers, however, trends similar to those shown by
the experimental data probably would occur, although the breaks in the
curves may be delayed to higher lift coefficients.

The observations made in comparing experimental and calculated
derivatives ihdicate that the analytical assumptions normally made for
Unsweyt wings throughout the Mf%-coefficient range are likely to be
inadequate for swept wings, particularly at moderate and high lift
coefficients. Although tiportant simplificationswere introduced in
developing the present analytical method, this simplified method appars
to be justified because even the most rigorous method, if based on
potential-flow concepts, can be expected to give reliable results only
over a lWted lift-coefficientrange. At-high lift coefficients,a more
rigorous method probably would provide very little improvement over the
present method. Considerably more information about the characteristics
of flow about swept wings at him lift coefficients is required before
a reliable method can be developed for evaluating the derivatives
throughout the lift-coefficientremge.

CONCLUDING RIMARKS

Approximate relations for the low-speed stability derivatives of
swept wings are derived from a simplified theory. Comparison of values
of the derivatives obtained from the appro-te relations with values
obtained by experiment indicates that the calculated.values are fairly
reliable over a range of lift coefficient (starting from zero) that
decreases as the sweep an@e increases. Large discrepmcies between
calculated and experimental values are found for highly swept wings at
the high lift coefficientsfor which the flow is believed to be psrtiaUy
separated from the wing surfaces. Even a more rigorous method, if
based on potential-flow concepts, probably would not provide much
improvement in the range of lAft coefficient for which parbial separa-
tion etista.

Lmgleyhlemorial AerauauticalLaboratory
National Advisog CcmmLttee for Aercmautics

Langley Field, Vs., January 30, 1948

-...—._,__ ___ .____ —.— . —. _——
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AEPENDIX

NACA TN No ● 1581.

STABILITY DEIUVA!TIXESOF UNSWEPT WINGS

The determination of the stability derivatives of sweyt wings
according to the methods proposed in the present yaper involves, in
several cases, application of a~proximate corrections for the effects of
sweep to velues of the derivatives for unswept wings that have the same
as~ect ratio and taper ratio as the swept wings. = the absence of
experimental data for the unswept wings, theoretical values must be
used. In many instances, aspect ratios below the range that has been
investigatedby rigprous theoretical methods must be.considered. This
appendix yresents methods of extending or of extrapolating the available
theoretical values of the stability derivatives of unswept wings to low
aspect ratios. For tie various yawing-moment smd rolling-moment deriva-
tives, effective lateral.centers of ~ressure are calculated by equating
approximate rebtions for the derivatives to values of the derivatives
that have been calculated by more rigorous methods. The curves obtained
for the lateral centers of pressure sre then extrapolated ti low aspect
ratios, and the derivatives =e then calculated by means of the approxi-
mate relations for the complete range of aspect ratio. This yrooedure
is considered to give more reliable results than could be obtained by

*

extrapolatingvalues of the derivatives themselves, since the lateral
centers of pressure normalJy vary only slightly
the derivatives w vary considerably.

Lift-Curve Slope

An equation (given in reference 2) for the
follows:

where Ee is a correction factor that accounts
lifting-~ W lifting-surface theories. For
of a. (equal to 2fi),equation (Al) becomes

wi~ aspect ratio, whereas .

lift-curve slope is as

(Al)

for differences between
the theoretical value

(A2)

me edge-velocity covection factor w is given in figure 16 of
reference 8 for aspect ratios from 2 to 16; therefore, the product AEe
may be calculated for the same range.

—.— -. — .—-— —.
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The lift-curve slopes for win~ havtig very low aspect ratios
(approaching zero) is, according to reference 4,

(A3)

By equating relaticms (A2) and (A3), the product AIIe is found to
approach 2.0 as the aspect ratio approaches O. A curve of the prod-
uct me, therefore, canbe constructed for aspect ratios fromo to 16.

(See fig. 22.) These values for me can he used in equation (Al)
to calculate values of

&
throughout the asyect-ratio range.

RoUing Moment Due ta Sideelip

A theoretical solution for the rol.ltig moment due to sideslip has

leen obtained by Weissingar (reference 9). b gener~, Wetasmer’s

results have been found to be in good agreement tith experiment. values

oZp
of the quantity from referen.ce9 ae presented in figure 23.

~
A=OO

The lateral center of pressure f~l associated with the

P
antisymmetrical load on a swept wing in sideslip can le assumed, as a
first approximation, to be equal to the lateral center of pressure of tlm
load associated with dihedral for an unswept wing. The psnels of an
unswept wing undergo sm angle-of attack change, in sideslip, given by

k=~tir

1!% this relation, the rolling moment due
dihedral, can be shown to be approximately

cl~
l~oa

r‘=-~~b/2

-0-- *

to sidedip, per radian of

Values of ~~a for wings having aspect ratios between 6 and 16
b/2

obtained by equating the expression @st given to the values of

given in figure 16 of reference 7. me results, extrapolated to
aspect ratio of 1.0, are presented in figure 23.

. Yawing Moment Due to Sideslip

An unsymmetrical induced-drag distribution, associated with
unsymmetrical ltit distribution, exists on an &wept wing in sideslip.

. . ..——— —..—
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.

A ya%ing moment.due to sideslip therefore results, which, acco~g to
Hoerner (reference 10), is given approximately hy the relation

(A4)

Rolling Moment Due to Rolling

If the wing-panel loads of an unswept wing in roll axe assumed to
be concentrated at the lateral centers of pressure, the rolling moment

due to rolling can he expressed as

where, by a development similar to that given
on the rolling moment due to rol~ng of swept

CL ~ AX ~L’p
C1L=2 2’A+2%m

—.

7-

and

. —

in the section of the text
*W,

J@
m .

The derivative of rolling moment due to rolling, therefore, is

which, with the Mfting-suzl?ace- theory correction factor Ee’ of

reference 8, becomes

(A5)

.
.

-..

.—-—. —.- —--- .-. ——— .
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For elliptic wings
gives

which iS

The
wings at

Equation

identical

w a section lift-curve slope of 2JC, reference 8

Y’(A
%p = -i AEe’+4

(A6)

7L *

with equation (A5) when
Y32 .-.

is equal to 0.>.

rolling moment due to rolling of low-aspect-ratio triangular
smaU angles of attack is, according to reference 5,

CZY =-+-CA (A7)

(A7) is expected to apply, at small angles of attack, to low-
aspect-ratio wings of almost my pian form.

Equation (A6) is identical with equation (A7) provided that the
product A.Ee’ is equal to 4.0. This value and values of Ee’ given in
reference 8 for aspect ratios greater than 2.5 have been used to construct
the curve of the pro~uct AEe’ given in figure 22. Values of the lateral

y~ 1

center of pressure
?b2

were calculated for wings of aspect ratios

greater than 6.o by setting equation (A5) equal.to the lifting-surface
values of Cz~ @ven in reference 8. These results, given in figure 24,

were extended-to the value 0.5 which was previously found to satisfy
equation (A6) for aspect ratios approaching zero. Since both the lateral

h’
center of pressure

-#b2
* the product AEe’ have now been evaluated.

for aspect ratios fr&O to 16, equation (A5) may be used to calculate Czp

throughout this aspect-ratio range. The results of calculationsbased
on a value of a. equal to 5.67 are presented in figure 24.

Yawing Moment Due to Rolling

An equation for the yawing moment due to rolling of umswept wings,
derived from wing-panel primary force coefficients instead of section
primary force coefficients, is found to be

(A8)

—
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This equation and values of Cnp @ven ti figure 9 of reference 7 were

Y~
used to calculate values of

7
~ z for wings having aspect ratios

between 6 a& 16. The results, plOttOd.ti figure 25, were extrapolated
to an asyect ratio of 1.0. The extrapolated curves and equation (A8)

were used to calculate the values of
(%)

presented in figure 25.
R A_@

RollingMomentDue to Yawing .

The rolling moment due to yawing for unswept wings is found, by a
derivation hsed on wing-panel primary force coefficients, to be.

Clr oyLIr 2

—=b~CL
(A9)

jL I

Values of ~& were -ctited for aspect ratios ranging from 6 to 16

by means of equation (A9) and the values of CZr @ven in figure 11 of

reference 7. The results, extrapolated to an aspect ratio of 1.0 exe
presented tn figure 26. The extrapolated curves and equation (A9\ were

()CLwed. to calculate the values of CL Lao ‘Ven

Yawing Mment Due to Yawing

The increment of yawing moment due to yawing
resulting from lift and induced drag, is found by
wing-panel primry force coefficients to be given

in figure 26.

of unswept tigs,
a derivation based on
by the expression

(Ale)

This equation smd values of Cnr from figure 12 of reference.7 (as
TN

corrected by errata sheet) were used to calculate values of ~ for
b/2

%r
aspect ratios from 6 to 16. Figure 27 presents values of

~
extrapo-

[1(-LWtlr
lated to an aspect ratio of 1.0 and values of calculated

(JL2
A=OO

from equation (AIO) smd the extrapolated,curves.

.

.-.
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